Coarse and Uniform Embeddings into Reflexive Spaces
نویسنده
چکیده
Answering an old problem in nonlinear theory, we show that c0 cannot be coarsely or uniformly embedded into a reflexive Banach space, but that any stable metric space can be coarsely and uniformly embedded into a reflexive space. We also show that certain quasi-reflexive spaces (such as the James space) also cannot be coarsely embedded into a reflexive space and that the unit ball of these spaces cannot be uniformly embedded into a reflexive space. We give a necessary condition for a metric space to be coarsely or uniformly embeddable in a uniformly convex space.
منابع مشابه
A new metric invariant for Banach spaces
We show that if the Szlenk index of a Banach space X is larger than the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into X. We show that the converse is true when X is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that ...
متن کاملA theorem of Hrushovski–Solecki–Vershik applied to uniform and coarse embeddings of the Urysohn metric space
A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric spaces leads to a stronger version of ultrahomogeneity of the infinite random graph R, the universal Urysohn metric space U, and other related objects. We propose a new proof of the result and show how it can be used to average out uniform and coarse embeddings of U (and its v...
متن کاملThe Nonlinear Geometry of Banach Spaces
We survey some of the recent developments in the nonlinear theory of Banach spaces, with emphasis on problems of Lipschitz and uniform homeomorphism and uniform and coarse embeddings of metric spaces.
متن کاملEmbeddings of Proper Metric Spaces into Banach Spaces
We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...
متن کاملOn comparison of the coarse embeddability into a Hilbert space and into other Banach spaces
M. Gromov [8] suggested to use uniform embeddings into a Hilbert space or into a uniformly convex space as a tool for solving some of the well-known problems. G. Yu [20] and G. Kasparov and G. Yu [10] have shown that this is indeed a very powerful tool. G. Yu in [20] used the condition of embeddability into a Hilbert space; G. Kasparov and G. Yu [10] used the condition of embeddability into a g...
متن کامل